Gas heating: The Energy Efficiency Podcast – episode 5

Gas Heating

gas heating
A Tesco supermarket

Welcome to Gas Heating: The Energy Efficiency Podcast – episode 5, the podcast that brings you a mix of energy efficiency news, products and tips all year round. We’re interested in profiling people and products involved in promoting energy efficiency habits, products and information, so please do get in touch if you have something to contribute.

This week: gas heating, where to start with draughtproofing your home, and energy efficiency in self build. Before we get on with our advertised features, the Guardian recently ran an article suggesting that supermarket fridges could form a nationwide virtual battery for the National Grid. Research in a mocked-up supermarket, undertaken by Tesco and the University of Lincoln, shows that electricity can be provided in short bursts to the grid by briefly stopping power to supermarket fridges. Power is already turned off to the fridges each day to allow for deforsting, and the proposed system would replicate this. The power wouldn’t be off long enough to affect the food, but the top-up power could help balance a dip in the grid’s energy supply.

The Guardian article quotes Professor Simon Pearson of the University of Lincoln:

Cold food is, in fact, the UK’s largest battery. There is sufficient ‘cold energy’ in the food to keep a refrigerator cold if the system reduces power for short periods to help offset power shortages on the National Grid.”

The National Grid already operates this type of system with companies that own utility-scale batteries. Increasing the scale of the operations to include a nationwide supermarket chain increases capacity while helping supermarkets reduce their carbon footprint. Commercial refriferation systems make up about 12% of the UK’s carbon emissions, with energy bills accounting for 1/3 of costs for a typical retailer. This is one example of technology helping the UK to reach its net zero target.

Gas heating

gas heating
An oil tanker delivering to a rural area

Last week we looked at district heating networks, concluding that they were more energy efficient than heating produced by individual boilers, and ideally produced their heat from renewable sources or waste heat. This week we look at mains gas heating. Wikipedia defines natural gas as “a non-renewable hydrocarbon”, describing it as “a major cause of climate change” both in itself if it leaks, and because of the CO2 emitted when it’s used.

Widely available

Gas heating is far more widely available than district heating, but it isn’t available everywhere. Rural areas tend to be less likely to be connected to the gas network, so oil is a more commonly used fuel in the countryside. OVO Energy states that 3.9million homes in the UK are without gas heating, and Citizen’s Advice Scotland quotes a figure of 46% of households in Wales without access to gas.

In the UK the average gas-connected home is built from the 1950s, and average off-gas home up to the 1930s. Of gas-connected homes, over 75% are within bands A-D of the Energy Performance Certificate rating, ie the best-performing four bands.

8 million gas boilers are sold in the UK every year. Simply, they heat up water to pump through pipes to radiators and provide hot water to kitchen and bathrooms. According to Rointe, suppliers of electric heating infrastructure, gas heating systems haven’t changed much over the years. They tend to be more expensive to install than electric systems, being more complex, and don’t last as long. Gas heating comes with the risk of carbon monoxide leaks and burst pipes, and is the UK’s biggest greenhouse gas emissions source.

Cheap to use

The Energy Saving Trust describes gas as usually being the cheapest form of heating fuel available, and having the lowest CO2 emissions apart from wood. OVO has pulled together data on energy prices and the energy efficiency of the most commonly used forms of fuel, and presented them as a graph on its site. Gas comes out as the cheapest, electricity the most expensive. That graph is on a very useful page that gives a comprehensive run down of the different forms of fuel generally available and what a household can do to maximise them, so it’s very well worth a read if you’re considering a change or an upgrade.

Gas produces lower CO2 emissions as it is’clean burning’, ie it produces fewer undesirably by-products. When used to generate electricity, gas produces about half the emissions of coal. It is also a more efficient fuel than coal, but it’s all relative. A coal burning plant is around 30%+ efficient, whereas a gas-fired one is around 43% efficient. It’s not great, but it’s better. In plants that use waste heat from a gas turbine to power a steam turbine, known as a natural gas combined-cycle, efficiency leaps to as much as 60%.

Fracking

Gas is such a popular fuel in the US due to its lower CO2 emissions, the speed with which gas plants can increase or decrease production in response to available quantities of wind and solar power, and its low price.

gas heating
A shale gas extraction plant in the USA

In America, virtually all natural gas is produced domestically, mainly in Texas, Pennsylvania and Louisiana, and exported to Mexico and Canada. It was discovered originally as an unwanted by-product of oil production. The US is the world’s largest producer of natural gas, passing Russia 10 years ago. An ample supply in America brings prices down to much lower than in Europe and promoted natural gas in electricity generation.

It’s worth noting however that shale gas is now a key source of natural gas in the US, which is a controversial subject both there and in the UK where its extraction is known as fracking. Fracking is blamed for earth movements and contaminated water supplies, among other things, and as part of the fossil fuel industry its operation is unpopular in the UK in particular.

In the EU as a whole, the use of gas is declining slowly. Gas-fired power plants that used to run continuously now tend to run during peak times only. A report from the European Energy Agency suggests that warmer winters are reducing the call on gas in the winter, and that renewables are stepping in to make up ever larger quantities of the heating power demand. However outside the EU, and not just in America, the use of natural gas is increasing.

So how do you use gas heating efficiently? Really it depends where you look for advice. There is a theory that the boiler is best left on low all the time, but another that you should use the heating only when you need it. Another belief is that radiators should be set to a very low temperature or turned off in rooms seldom used, but that argument is countered with the suggestion that the fabric of the room will deteriorate.

Getting the best from any particular gas-fired set-up means understanding the specifics of your system – your boiler, your radiators, your house, your habits, your budget – and being prepared to tweak the system to get it right for your comfort and the house’s fabric. There are a couple of web pages looking at the ins and outs and whys and wherefores of all this, Money Saving Expert and Ask Jeff. There’s a wealth of information available on both.

Clunky

Reading up on the nuts and bolts of gas heating, it comes over as a clunkier system to use than eg electricity. Heating up just one radiator requires the system to be activated as much as heating the whole house, and gas boilers are at best 90% efficient. It can be less easy to control heat levels in different parts of the house. There’s no getting away from the fact that gas is a fossil fuel, so even the newest and most efficient systems are still running on a fuel that has really had its day. Although cheap to run on a per-unit basis, installing and maintaining a gas system can be expensive and invasive, and running it comes with ongoing risks. If you’re looking for the most energy-efficient form of heating, gas wouldn’t really be in the running.

According to a report from the CCC, more or less all homes currently running on or connected to the gas network would be suitable to switch to hydrogen heating or a heat pump, but barriers to fitting these include upfront costs and the suitability of the home itself (heat pumps need to be connected to energy efficient buildings in order to perform well). The CCC report, titled Heat in UK Buildings Today, is suprisingly interesting if a bit technical and wordy.

Emissions

The report points out that the 23 million homes currently connected to the gas network account for a walloping 77% of total UK heating emissions. The CCC wisely points out that these homes may have other issues affecting their performance, such as lack of cavity wall and loft insulation. Fitting these would reduce the heating needs and thereby help to tackle fuel poverty and reduce carbon emissions. It emphasises the scope for energy efficiency in new builds, stating:

” While the energy efficiency standards for new homes have increased substantially over the recent years, low-carbon heating sources are not required in new homes.” We will be looking in a future episode at the insulation standard required in new build homes constructed by mass building commercial outfits.

The report presents the rather sad finding:

“More generally, there is evidence that households typically do not think about heating, associated emissions, or what heating system they use, as long as it is delivering the expected level of comfort and it is considered financially affordable.”

This being the case, energy efficient heating systems need to be baked in as widely as possible so that what households aren’t thinking about isn’t doing any more damage than is unavoidable.

Where to start with draughtproofing your home

Or you might ask, why draughtproof your home? To echo the CCC’s point in the last feature, reducing a home’s need for heating has benefits all round. The bills go down, the home is more comfortable, and there is a reduced need for whatever fuel is being used to provide the heat. It’s also good for the fabric of a building, but consider the difference between draughts and ventilation. Ventilation is needed, controlled and welcomed, draughts aren’t.

So where do you start? If you haven’t already listened to our feature on draughtproofing historic buildings you might find it useful to do so now, as there can be quite a bit to consider.

Open doors

First you need to understand your home and your habits. I knew someone who left their back kitchen door open 24 hours a day so that the dogs could come and go freely (if only we’d had the scope then to provide them with a dog-size Petflap). Draughtproofing the kitchen windows isn’t really going to help if the door’s open all day, but paying attention to the space between the kitchen ceiling and the floor of the room above could pay dividends. I knew someone else in a damp home who kept the heating on low 24 hours a day and opened windows so that the house stayed a comfortable temperature. Draughtproofing rooms where the windows are always open wouldn’t be the best use of budget – better instead to address the dampness.

Ventilation

So once you know where the draughty spots are in your house you can tackle them. If you heard episode 2, Passivhaus, you’ll have heard about the C.H.E.E.S.E project in Bristol that offers affordable thermal imaging to identify cold spots in a building. Common trouble spots are poorly fitting doors and windows, draughty letter boxes and pet doors (our company started in response to just that problem), but pay attention also to, for instance, where cables go through walls. Any vents should be left unblocked, but you can open and shut them when needed. Be aware too that some rooms need very good ventilation as they can become steamy – the kitchen and bathroom are obvious places, and a utility room if you have one. Anywhere with a flue or open fire also needs good ventilation.

As the temperature drops it’s easier to feel where draughts come in, but be sure to distinguish between windows that just aren’t very insulating, and windows that have actual draughts coming in around them. If you aren’t planning to replace draughty window units, then fitting a sealing tape or strip around the draughty part of an opening window will help to block draughts. Check it doesn’t impede the action of the window so you can still open it. A non-opening window can be draughtproofed with silicone sealant.

Doors

gas heating
A curtain over the door helps to block draughts and keep your home cosy

Doors are quite easy to draughtproof. First check whether the door itself fits its frame snugly and address any problems there. The next three steps are dealing with a draught coming in under the door, through the letterbox and through the keyhole. Draughts under the door just have to be blocked, if replacing the door or permanent remedial works aren’t feasible. A good old-fashioned door sausage helps, as will a curtain. Your granny probably had a door sausage – mine did, complete with fabric ears and nose to turn it into a sausage dog – and they’re simple to make if you fancy a wee project.

A curtain is a good idea no matter what, as it will make the area around the door more cosy once temperatures begin to fall. There’s something quite primitively comforting about locking the door and pulling across a snug curtain, on a cold, dark night.

Depending on the design of your door’s handle and lock, you may be able to fit a cover to your key hole. Try to use a material that insulates, rather than a metal which will conduct cold air.

Letterbox

Lastly the letterbox. Consider three things here: the fit of your letter plate, the action of your letterplate, and what you fit to prevent or block draughts. A letter box aperture is just a hole through the door, and to ensuree that draughts don’t whistle in round it, the letter plate needs to fit snugly. That’s the first thing to check.

Secondly, check the action of the flap in the letter plate. Does it stick? Does it fit the gap properly? If it sticks, try making sure all the edges are clean – depending on the material this might need a damp cloth, or brass or steel cleaner and a SOFT cloth – then see if the action improves.

If the letterbox is in really poor shape look at replacing it. These days fewer people have giant wads of newspaper delivered through the letter box and the chunky Yellow Pages is a thing of the past, but large deliveries being stuffed through the average letter box can cause damage.

If you still suffer from letter box draughts, you need a draught excluder, a unit that fits on the house side of your door and performs in one of several ways to block draughts. Sometimes these are brushes, sometimes magnetic strips, but anything of this ilk provides a barrier to post as well as of sorts to draughts, and can result in damage to the letterbox as the delivery person rams post through the obstructions. The Ecoflap lifted at the merest touch of a pizza shop flyer due to a widget, yet beccause of the way the flap was cut would stay shut and not rattle in very stiff winds. It will be replaced by the Letterplate Eco, an external draughtproof letter plate that works on the same principles.

Pet doors

gas heating
The draughtproof Petflap

Approach your cat flap in the same way. This is used, potentially, many more times a day than a letterbox so all the same considerations apply but tenfold. If you don’t have a pet then consider sealing the cat flap. If the problem is simply that cold air comes in around the pet access flap and there is no insulation to the unit, consider upgrading to a draughtproof Petflap. It works on the same principle as the Ecoflap, blowing more firmly shut against its frame in a draught. It also has 12mm of material between your house and the weather outside, providing insulation against cold weather.

Also in episode 2 we mentioned the Chimney Sheep, a sheep’s wool chimney blocker that prevents draughts coming down the chimney while still allowing the house to breathe through the chimney. Obviously this needs to be removed if and when you use the chimney, but, especially if you have chimneys you never use but don’t want to block up, this is a great solution to an obvious and large draught risk. Loft hatches are another large draught hazard so apply strip insulation round there if need be.

Many of us have cables coming into the sitting room to deliver digital services. It’s not unusual for draughts to creep in round the cable, and we even had ants come in through ours once, so pay attention to anything like that and block the gaps. The same applies to pipes, but be aware of what the pipe is used for and how it might behave in hot, cold or freezing weather.

These measures are small, but there’s good value to be had from checking these areas. It’s possible to spend a great deal of money on insulating your home and installing high-performance hardware, but if draughts can still come in in all the old places then the job isn’t finished.

Infrastructure

Once the small jobs are taken care of, consider next how much cold air comes up through the floor and round the edges of the room. Floorboards need to be flexible so make sure any measures employed take that into consideration. As well as filling gaps, feature floorboards can be covered with a rug when it gets particularly cold, if you want some temporary extra cover.

A very useful page on The Energy Saving Trust – no episode complete without a mention – mentions old extractor fans. If they’re no longer in use they can be filled and sealed at each end.

If all of these spots are checked and dealt with, your home should be that bit more comfy, cosy, and cheaper to heat come the winter. An article on the Homebuilding&Renovating website claims that many of these simple measures can pay for themselves within a year, but that’s very much dependent on individual circumstances. A page on the Which website goes into detail quantifying savings.

Lastly, it’s worth investigating whether you’re eligible to take advantage of a funding schemes. There are groups and councils all over the country, in fact all over the world, offering free and subsidised good and services to draughtproof homes, so a little while spent searching for something in your area could pay dividends.

Energy efficiency in self-build

Self build is a huge area, itself the subject of dedicated podcasts including Ben Adam Smith’s House Planning Help. Planning a self build is the perfect opportunity to design in energy efficiency measures that the house will benefit from for years to come. Your plans are bound to be constrained by something: planning position, location, budget, finding the right architect and builder or even your type of mortgage. Unless you yourself are the eco build expert, then it’s worth putting yourself in the hands of someone who is. That’s the technical, project management and compliance bits taken care of, but the decisions will come down to you.

Fabric First

Firstly you need to decide how far you’re taking your energy efficient build principle, what does the phrase mean to you? Reusing materials? Upgrading and expanding an existing building on site? Building a Passivhaus? What is common to most eco builds is a ‘fabric first’ approach. What is fabric first? Kingspan Insulation defines it as:

“maximising the energy performance of the structure itself through the components and materials making up the building envelope. This is before renewable mechanical and electrical building services are considered.
In other words, constructing your building to save energy for you before renewable technologies are factored in.”

In other words, the house itself is designed and constructed so that it’s already performing at a better level of energy efficiency than a regular build, before goods and services are taken into account. This really has to be the first principle of an eco build, and it can be achieved in many ways, including through the innovative use of ancient materials, such as straw bales and sheeps wool insulation.

The website LoveProperty has a page on straw bale construction, featuring homes including Strawbale Getaway in Colorado, The Gatehouse in Dumfries and a house in Zoermeer in the Netherlands. These are fascinating projects and well worth a read.

Sheep’s wool

Sheep’s wool is not only insulating but provides a sound baffle and acts as a moisture buffer. It has an insulation value unmatched by any other material, according to the website Sheepwoolinsulation.com, which provides sheep’s wool insulation to the building industry. As well as loft and wall insulation they provide underlay, cylinder jackets and even slippers, so you can get the full sheepy experience.

Prices for sheep’s fleeces have been very low in recent years, so given the work involved in processing and marketing them they haven’t been valued. This changing now, with wool being promoted for insulation but also for all sorts of other products including duvets and coffins. Sheep’s wool was used recently in Manchester to insulate historic buildings, sourced locally to reduce the shipping miles. We think of this as new and exciting, but sheep’s wool insulation has been used in one form or another for generations. Not only does it keep you warm in the winter, but it keeps you cool in the summer, so you almost have to ask why an eco-build wouldn’t consider it for insulation. There are of course many other options for the building materials, including high-performance prefabricated panels.

Airtightness

An energy efficient self build will pay close attention to airtightness. It’s going to be a high priority. We receive many enquiries from people building energy efficient homes with very thick walls, who want to put in a cat flap with trunking that reaches right through. We can do this happily. We’ve recently received two enquiries for walls 60cm thick, which indicates just how much insulation can be fitted into a wall.

A page on the website acarchitects.biz goes into detail on how well various wall materials perform on airtightness and is a good place to start if you’re doing some research. They make the point that whatever you go for, airtightness and insulation go together so make sure they both feature.

Windows

Windows are crucial to the success of an energy efficient home. Get it right and you’ll get a beautifully light home, keeping your lighting costs down and benefitting from the warmth generated. The problem can be that large areas of glass that conduct heat into the house in the daytime (known as solar gain) can swiftly conduct it right back out again after dark. Triple-glazing can help to address this. There is also the balancing act between getting the benefit of the warmth and not overheating.

Achieving the right balance for you will require technical help and the best performing window units your budget will run to. This podcast from Mottramm Architects in Maine covers all the considerations of choosing windows to complement an energy efficient build.

gas heating
Solar panels on a house

Power

Once your home is built from high performance materials, you’ll need to power it. Are you going to fit your own energy generation systems? Even if you’re not fitting PV panels for instance, or a heat pump, you’ll likely be installing energy efficient heating. In this instance underfloor heating is a popular choice.

Mechanical Ventilation Heat Recovery systems recycle heat that would otherwise be lost. They tend to be a requirement of passivhaus certification, but you don’t have to be building a passivhaus to benefit from MVHR.

It goes without saying that any build aiming for a high standard of energy efficiency will easily surpass current building regulations (we’ll take a look at building regs in a future episode). As with home draughtproofing measures and depending on the nature and scale of your self-build, it’s worth investigating if there are government schemes where you live that might help with the cost of an energy efficient boiler, or fitting loft insulation.

For inspiration, why not look at the Grand Designs web page on energy efficient self-builds? It features seven builds, from agricultural housing to extended period houses to glossy new builds. See what can be done in all sorts of locations from a lochside to a forest to the Sussex suburbs.

Energy saving product of the week:

Gas heating
A solar charger in use

This week’s energy saving product is something you might want to get your hands on with a spell of sunny weather coming up – solar chargers for mobile phones. These use solar power rather than mains power to charge not only phones but tablets and laptops. There are quite a few to choose from and while none of them are quite ready to replace a standard mains charger, that doesn’t mean you can’t benefit from using direct sunlight.

Chargers come in battery form and direct charge form. The battery type stores the energy its solar panels create, giving you a back-up if you’re nowhere near a charging point when your phone runs out of juice. The direct charge type pump the energy they create straight into a device plugged into it, and doesn’t store it for later use. Both have a role.

The units tend not to be cheap – £50 isn’t unusual – so if a solar charging unit appeals to you take a look at the website techadvisor.co.uk for a rundown on what’s available.

What are we up to? We’re still making our next batch of Petflaps and progressing with our photoshoot, none of this helped by illness sweeping through the team. We’ve also upgraded our shopping cart so buying from outside the UK is now a simple matter.

Thank you for listening to episode 5 of the Energy Efficiency Podcast, now available through Apple Podcasts. If you like your podcasts with pretty pictures, a video version is available on YouTube – look for the Ecoflap channel. Until next time you can find us on both Twitter and Instagram as @Ecoflap, and on Twitter we also tweet under @The Petflap In next week’s episode we’ll look at electric heating, energy efficiency in social housing and insulation requirements for new builds. Bye.

Music credit: “Werq” Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/

Net Zero: The Energy Efficiency Podcast – episode 4

Net Zero

Welcome to Net Zero: The Energy Efficiency Podcast, episode 4, the podcast that brings you a mix of energy efficiency news, products and tips all year round. We’re interested in profiling people and products involved in promoting energy efficiency habits, products and information, so please do get in touch if you have something to contribute.

This week: net zero, tenants’ rights to energy efficiency works in their homes, and district heating. But before we get on with our advertised features, at the end of last week the UK press was reporting the National Grid’s prediction that zero carbon energy sources will provide more than half the UK’s energy in 2019.

Coal-fired power is declining, replaced by clean sources of power such as wind, solar, hydro and nuclear. So far this year coal-fired power has generated only 3% of power, whereas renewable eneergy has leapt from generating just 2% to 20%. This comes on the back of Britain’s longest stretch of coal-free power generation recently, equivalent, according to a Guardian article, to preventing 5m tonnes of CO2 being release into the atmosphere, the equivalent of a staggering 12bn miles driven in a car.

The government plans to phase out all coal-fired power generation in just six years from now, so the Natinal Grid has the job of ensuring other sources can replace it. It is spending over £1bn a year to adapt the grid for all renewables.

Net Zero

net zero
Carbon capture technology at a coal mine

Net zero is in the news every day just now it seems – so what is it? According to the LSE’s Grantham Institute on climate change and the environment, net zero refers to emissions produced and emissions removed from the atmosphere. This can be achieved by reducing the emissions, extracting carbon, or a bit of both. The Grantham Institute draws a distinction between net zero, and gross-zero:

“In contrast to a gross-zero target, which would reduce emissions from all sources uniformly to zero, a net-zero emissions target is more realistic because it allows for some residual emissions.”

Trees

There are many permutations of how to achieve net zero. Simple tree-planting can help as trees absorb carbon dioxide. A positive knock-on from this is increased habitat for creatures of all sorts and an enhanced landscape, but this is a slow process. An article from Left Foot Forward claims that tree planting alone could deal with a third of greenhouse gas reductions needed in the next decade. This is the subject of political pressure for increased funding and government attention. Encouragingly, the CCC recommended a huge programme of reforestation and peat moorland restoration in its recent report on net zero.

Carbon capture

Technology has a huge role to play, most prominently carbon capture and storage. This in theory permits the continued burning of fossil fuels. The carbon is compressed to a liquid state then pumped deep underground into now-empty coal mines, gas reservoirs and so on. This system can capture up to 90% of carbon released from burning fossil fuels in electricity generation and some industrial processes.

Direct Air Capture removes CO2 directly from the air, converting the oxygen and storing the carbon. This type of system is used in sealed environments such as submarines and space craft, but it’s difficult to make economical at scale. As usual, there is the need to make a business case for developing technologies, creating a market for so-called ‘negative emissions’. An article on Business Green suggests that this can be achieved through a government-run system or regulated market.

Offsetting

Emissions cannot be removed completely. The CCC estimates 130 million tonnes of carbon dioxide-equivalent will still be emitted even with current technologies maximised, mainly from industry, aviation and shipping, and agriculture. Offsetting seems to be the only way to deal with these, at the moment. The Grantham Institute explains this as:

“By having another country plant more trees or use negative emissions technologies, this reduces the amount of emissions globally, so countries may wish to use this to achieve their net-zero target.”

Clearly this strategy has its limitations, ie we can’t all do it, and for this and other reasons offsetting is controversial. So far Costa Rica is the only country that believes it can reach net zero without offsetting.

net zero
Aviation would see some of the steepest price rises

So how does the rest of the world reach net zero? One theory is that schemes imposing fines on the worst polluting industries would provide an imperative to reduce emissions while generating revenue to help fund negative emissions research and systems. The CCC’s recent report suggests differing and increasing prices for carbon, with industries such as cement and steel production and aviation seeing some of the steepest rises.

Aviation

All carbon-creating travel would become more expensive with fuel duty and flight prices increasing. Industry wouldn’t welcome these price rises, already accusing carbon prices of undermining its competitiveness. The CCC recommends combining this with targetted policies to ensure the worst-off households were protected, eg through more funding for energy efficiency measures in fuel-poor homes.

Internationally

Achieving net zero is a very difficult ship to steer. Business and industry wants to protect itself but recognises it can’t carry on as it has. Incentives have to exist for the development of new technologies. Concerned populations want to see progress but not be deprived of too many features of modern life. Governments have to be seen to do something while not squashing the sectors it needs for revenue and support. There are different approaches around the world.

Bhutan is currently carbon negative as it has a population of less than a million and little industry. It aims for carbon neutrality, likely achieved through using its natural resources to generate power, but this will need to be balanced against a rising demand for cars in the kingdom.

Chile plans to close 28 coal-fired power plants in the next five years and phase out coal altogether by 2040, aiming for net zero by 2050.

Denmark is targetting cars, banning sales of new diesel and petrol cars by 2030 and hitting net zero by 2050.

Finland aims for net zero by 2035, targetting industrial logging and phasing out peat burning for power generation.

Iceland plans to phase out fossil fuels, plant trees and restore wetlands. Iceland uses renewable geothermal and hydro power so generates very little carbon through electricity production.

Scotland is basing its plans on its strong renewable energy resources and storing CO2 in depleted North Sea oilfields. It has a number of plans to go as far as it can while still attached to the UK, including reducing VAT on energy efficiency improvements in homes.

Uruguay is likely to become a net carbon sink by 2030. Uruguay is increasing forest cover and reducing emissions from farming, waste and energy.

Thank you to the website climatechangenews.com for that global rundown.

Tenants’ rights to energy efficiency works to their homes

net zero
Typical pre-1919 UK housing

In April 2018 legislation came into force requiring landlords to improve the draughtiest homes in order to agree new tenancies. Homes in bands F and G, the lowest-performance rating, must now meet band E minimum. The same regulations will affect all tenancies, new or existing, from April 2020. There will be a civil penalty of £4000 for any breaches. The government aims for all privately rented homes (note that specific phrasing) to meet band C by 2030.

In 2018 the cost ceiling was put at £2,500, but the government will now tighten up this legislation. It was designed to protect landlords from significant up front costs on work such as insulation. Now increases in the up front cost threshold to £3,500 exempt fewer landlords from carrying out works. This higher level is expected to come into force this year.

Low-rated homes

According to an article in the Guardian, there are nearly 300,000 F- and G-rated homes in England and Wales. The government expects works on houses in these bands to save tenants about £200 a year. There is widespread criticism from tenants’ interests groups and climate campaigners, claiming that a ceiling of £5000 would have lifted 40,000 homes out of fuel poverty and discomfort.

Green Deal

In April 2016 domestic tenants acquired the right to request to carry out energy efficiency improvements to their properties, with the landlord unable to reasonably refuse permission. The tenant was expected to pay for the work with no upfront cost to the landlord. At the time that covered improvements eligible for Green Deal loans, the idea being that money paid out for works was repaid directly through energy bill payments. From 2013-2015 the government supported the Green Deal Finance Company, and after that support stopped some private companies stepped in to support it instead. In 2017 this privately-backed scheme began offering loans.

Works covered include:

New or replacement boilers (condensing and biomass)
Insulation (solid wall, cavity wall, loft and floor)
Heating, hot water and lighting controls
Ground and air-source heat pumps
Fan-assisted storage heaters
Flue gas recovery
Draught proofing
Innovative hot water systems

The loan is attached to the property and so passes to a new owner if a house is sold. The National Audit Office was scathing of the original Green Deal’s performance, with minimal CO2 savings created and the loans not considered attractive by customers. If you’d like to find out more about the Green Deal schemes old and new, there’s an excellent page about it on the Which website, link in the shownotes.

From April this year, landlords now have to pay towards proposed works, with the ceiling increasing as described just now.

Complex

A tenant has to provide comprehensive information about the works they wish to carry out, including a detailed funding proposal and evidence that installers meet the required standards. A landlord can propose a counter-offer delivering equivalent energy bill savings. As you would expect, the conditions, requirements and exemptions are complex and if you are considering putting in a request you’ll have to do your homework.

Workshops

If you are a landlord you might be interested in attending one of the workshops or webinars the government is running to consult on this issue. Full details are on the gov.uk website, but sessions still to come are:

Oxford – Thursday 27 June, 10am to 1pm
Peterborough – Tuesday 2 July, 10.30am to 1pm
Greater Manchester – Wednesday 10 July, 1pm to 3.30pm

If you can’t attend a workshop, there is a webinar on 11 July, 10.30am to 12.00 (noon).

Guidance

Additionally, the Department for Business, Energy and Industrial Strategy has produced a PDF titled THE DOMESTIC PRIVATE RENTED PROPERTY MINIMUM STANDARD Guidance for landlords and Local Authorities on the minimum level of energy efficiency required to let domestic property under the Energy Efficiency (Private Rented Property) (England and Wales) Regulations 2015, as amended.

The document describes itself as providing guidance to landlords of domestic properties and others with an interest in – quite – “the minimum level of energy efficiency required to let domestic private property” – nothing like aiming for the minimum standard.

Benefit of energy efficiency works

The PDF’s introduction points out the unnecessary energy costs and poor health outcomes (and associated NHS costs, of course) of living in poorly insulated and heated homes, as well as the environmental impact. The report points out the benefit to housing fabric of good maintenance and proper heating. It expresses the wider hope that demand for energy efficiency measures will support jobs and the growth of the green construction industry and supply chain, increasing competition and bringing down costs for everyone.

According to the report many of the most poorly-performing homes were built pre-1919, which ties in with last week’s feature on Energy Efficiency in Historic Buildings. It makes some impressive claims for bringing down fuel bills, as follows:

“Average Annual Cost of Energy >> Data shows that in the PRS, the average modelled annual cost of energy for an EPC band G property is £3,105, and £2,124 for an EPC F rated property. This contrasts with an average annual cost of £1,425 for an EPC band E property6. Therefore, a tenant whose home is improved from EPC band F to EPC band E could expect to see their energy costs reduced by £700 a year so long as there were no wider changes in how they use energy in the property.” That’s quite some saving. To quote further from the PDF:

“Around a third of all fuel-poor households in England live in the PRS, despite the sector accounting for only around a fifth of all households in England.Amongst EPC F and G rated properties in the sector, recent data shows that over 40% of households are classified as fuel poor. Put simply, the PRS has a disproportionate share of the UK’s least energy-efficient properties and fuel-poor households. Installation of energy efficiency measures can help address this.”

District Heating

net zero
A district heating plant

Over the next few weeks we’re going to be looking at the energy efficiency of different types of heating. This week we start with district heating. What is district heating? You might well ask as it’s not common in the UK, providing only about 2% of heat demand, but is well-established in Europe.

Also known as a heat network, it works like this: heat is generated centrally and distributed through insulated pipes to homes and business for heating spaces and water. Heat is generated in a number of ways including fossil fuels and renewables. It can also take in waste heat from nuclear power generation and other sources. Heat networks allow for energy storage on a large scale, making the National Grid’s balancing act that bit easier. There are currently about 50 schemes in the UK using thermal storage, with heat networks as a whole here reducing carbon emissions by up to a ton of CO2 per year with potential for far higher savings.

Efficient

According to Wikipedia, district heating is more efficient and generates less pollution than individual building-based boilers. There are a number of systems in use, from fifth generation systems that don’t combust on site but use heat transfer, to fossil-fuelled combined heat and power (CHP), with various permutations in operation, making the most of different energy flows as they are available.

According to a January 2018 report by the Association for Decentralised Energy,

“The Government has identified heat networks as a key technology to decarbonise heat and has allocated £320m of funding out [sic] to 2021 to grow the heat networks market. This funding is expected to draw in up to £2 billion of additional capital investment and lead to the construction of hundreds of heat networks in England and Wales. Scotland has set an ambitious target to connect 40,000 homes to heat networks by 2020, representing 1.5TWh (teraWatt) of Scotland’s heat demand.”

Considering the difficulties we will all have in reaching net zero, district networks deserve a closer look.

Heat networks can be retrofitted or connected as a building goes up, with great CO2 savings possible in the retrofit according to the Joseph Rowntree Foundation, which suggests carbon savings of over 40% per home. The government’s own research suggests that heat networks could meet up to 20% of UK heat demand in 10 years from now, and getting on for half by 2050.

Heat networks in the UK

net zero
Buildings in the Dalmarnock Athlete’s Village

So where are heat networks in use in the UK? One supports the Commonwealth Games Village in Glasgow. Situated in Dalmarnock in the east end of Glasgow, this has been described as one of the most significant regeneration schemes in the UK.

After the 88 acre site’s use as the Athlete’s Village for the Commonwealth Games, a site which was itself initially a contaminated brownfield site which had to be treated, it was converted into a 700 home development It includes a sizeable chunk of social housing managed by Glasgow Housing Association (GHA), West of Scotland and Thenue Housing Association. It is now an eco-friendly village with a variety of housing types. The homes are by the river and surrounded by green spaces and excellent recreational facilities as a legacy of the Games.

All the homes and the sports arenas are powered by district heating. It supplies instant heat and continuous hot water. The system is up to 40% more efficient than conventional heating schemes, delivering cost benefits to residents. Together with a Fabric First approach and installation of solar PV panels, there was a 95% carbon reduction on 2007 levels. The construction of this scheme won 25 industry awards.

Heat Network Development Unit

Other schemes and projects continue to connect consumers to heat networks, including more major cities such as Leeds and Bristol. Figures from 2017 show 17000 heat networks supplying about half a million consumers in the UK, up from 2000 networks supplying just over 200,000 users in 2013.

The government runs a Heat Network Development Unit which is seeking investment for over 80 projects. Clearly there is huge scope for growing the proportion of homes heated through heat networks by renewable sources as a plank of meeting net zero. Currently gas features prominently as a source of distributed heat. Heat networks currently in the planning expect to use so-called efficient gas combined heat and power, but also heat pumps and more waste energy.

At the moment the vast majority of customers are domestic, followed by commercial and retail, with a much smaller number of connections to universities, hospitals, public buildings and light industry.

Low awareness

Research carried out by the government three years ago indicated a low awareness of heat networks among British consumers but a fairly positive attitude towards it. Half of respondents are happy to join a scheme if their bills don’t go up. Customers on a heat network show similar levels of happiness with their service as other power customers. Technical reliability is good but there is a lower level of control for heat network customers. A proportion of consumers in older buildings suffer from over-heating because they couldn’t control their heating. Residents of much newer homes complain that poor ventilation leads to over-heating. This is probably worth putting up with though as heat network customers pay about £100 less per annum on their bill than customers with an indvidial gas boiler.

Overall heat network customers are happy and pay lower bills. Is district heating the future for low carbon, energy efficient heat provision?

Energy saving product of the week

net zero
Hippo home pack

This week’s product won’t directly reduce energy use for most people, but still saves a very important resource: water. It’s easy to relax about saving water when we’ve had such a wet spell as just lately in the UK, but it remains vital to conserve water wherever possible.

Toilet bricks

We’re talking this week about toilet cistern water displacement bags, or as you might have heard of them, toilet bricks. They take several forms, but whether bag, brick or blob, they sit in your cistern, meaning that less water is required to fill the cistern after each flush. If an average house has two or three loos it’s easy and cheap to put one in each cistern – it’s another of our favourite fit-and-forget devices, just like our products.

Toilet bricks are often given away free at shows and talks, but with care, a house brick or a small plastic tub with a lid, weighted down, would work just as well. If you do need to buy one, among others available is The Hippo, at £1.49. That’s available from the website savewatersavemoney.co.uk. Fit, forget, start saving water straight away.

Richard’s energy saving tip of the week

We all know that light colours reflect heat and dark colours absorb it. You can apply this to your home decor to make the most of the money you spend on heating. Most rooms have a light-coloured ceiling – a dark one would feel quite imposing – and this light colour reflects warmth. If your carpet is a dark colour, it will absorb heat and radiate it upwards. This way you keep a warm zone of radiated and reflected heat in your room.

What are we up to? This week we’re making our next batch of Petflaps including several special orders with extended trunking. We’re also preparing for a photoshoot, demonstrating the Petflap fitted into different materials. This photoshoot is long overdue and we look forward to sharing the results with you in due course.

Thank you for listening to episode 4 of the Energy Efficiency Podcast, now available through Apple Podcasts. Until next time you can find us on both Twitter and Instagram as @Ecoflap, and on Twitter we also tweet under @The Petflap

In next week’s episode we’ll look at where to start with draughtproofing your home, wave and tidal energy, and energy efficiency in self build. We’re predicted a heatwave, so remember last week’s tip about keeping fresh air flowing through your home. Bye.

“Werq” Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/

Energy Efficiency in Historic Buildings: The energy Efficiency Podcast – episode 3

Energy efficiency in historic buildings

Welcome to Energy efficiency in historic buildings: The Energy Efficiency Podcast, episode 3, the podcast that brings you a mix of energy efficiency news, products and tips all year round. We’re interested in profiling people and products involved in promoting energy efficiency habits, products and information, so please do get in touch if you have something to contribute.

This week: energy efficiency works to historic buildings, energy efficiency across the world and sustainability in the construction industry.

Net zero carbon emissions

Before we get on with our advertised features, this week Theresa May, outgoing British PM, has put into law what is seen as her legacy: a commitment that Britain will achieve net zero carbon emissions by 2050, which would make Britain the first major economy to enact such legislation. Small countries including Finland and Norway are aiming for earlier dates – 2035 and 2030 respectively. What does May’s move mean for the UK, how likely is it to be  achieved, and how is it likely to be achieved?

Although the move is broadly welcomed, Greenpeace was critical of the carbon credits element of the proposed legislation, which is in the form of an amendment to the Climate Change Act. As a statutory instrument it doesn’t go to a vote of MPs. This is significant because among other criticisms the chancellor Philip Hammond claimed the move would cost £1tn and would lead to spending cuts.

CCC

The 2050 date was the recommendation of the official UK Committee on Climate Change (CCC), but May’s proposed use of carbon credits goes directly against the advice of CCC chairman John Gummer. What are carbon credits? According to Investopedia:

“A carbon credit is fundamentally a permit—issued by a government or other regulatory body—that allows its holder to burn a specified amount of hydrocarbon fuel over a specified period. Each carbon credit is valued against one ton of hydrocarbon fuel. Companies or nations are allotted a certain number of credits and may trade them to help balance total worldwide emissions. “Since carbon dioxide is the principal greenhouse gas,” the United Nations notes, “people speak simply of trading in carbon.”

Carbon trading

It’s felt by many that carbon trading places pressure on developing nations. Doug Parr, chief scientist for Greenpeace UK, describes carbon offsetting as “shifting the burden to developing countries” and goes on to describe it as having a history of failure.

Just as the renewables industry we talking about in episode 1, which will be a major plank of net zero, achieving this target requires the correct investment and infrastructure. An article in the Independent suggests that meeting the target will mean

“an end to heating of homes with traditional gas boilers, more green electricity, and a switch from petrol and diesel cars to electric vehicles, walking and cycling.”

With the exception of mothballing gas boilers, none of these are revolutionary moves but none the less May has firmly parked responsibility for the detail as something to be dealt with by future governments, criticised by some as lack of a detailed plan. Whatever your politics, it seems reasonable to allow for accommodating developments in technology. We struggle to predict economic conditions five years ahead at the moment, so to put together a detailed plan to achieve a target that is 30 years away would seem a grand waste of time for all involved. It’s expected the move will receive broad parliamentary support, so we’ll report back on what happened next.

Energy efficiency in historic buildings

energy efficiency in historic buildings
Pre-1919 houses

Energy efficiency in historic buildings is far from straightforward. Historic buildings, from medieval castles to interwar housing blocks, have a tendency to look pretty (yes, even interwar housing blocks have their fans) but be hard work to live in. They can be dark, draughty, very high-ceilinged and so hard to heat, leaky, and hard to update without upsetting what is sometimes fragile or unpredictable infrastructure.

Setting out on a relatively small project such as replacing a bathroom, stripping a floor or fixing a roof can reveal layer upon layer, even century upon century, of fixes, bodged jobs and worn out materials. Improving energy efficiency in historic buildings needs to be approached with extreme caution, an open-mind and ideally bottomless pockets.

Construction

Any older building will have been constructed at a time of different priorities, technologies and materials. For instance, early C20th housing was built when coal was an abundant and fairly cheap heating material that no-one though twice about using. The Clean Air Act was a long way off.

This means walls were barely insulated if at all, making those early C20th homes – still routinely in occupation – hard to heat. They are woefully lacking in insulation by modern standards. Wooden window frames, a feature of the vast majority of older housing, have a tendency to rot, shrink and swell. In some houses roofing timbers and floorboards will have warped over time, making it very difficult to achieve a draughtproof fit for windows and doors. Floors often have noticeable gaps between the boards which allow draughts to whistle up if not filled in.

Modern standards

Once upon a time this was considered inevitable, but in the C21st we can go a long way to removing these discomforts. The art is in ensuring houses are brought up to modern standards of comfort while understanding and respecting the building. We don’t want to interfere with its ability to keep standing happily for decades or centuries to come. In other words, approach wrongly, energy efficiency in historic buildings can cause more harm than good.

Listed buildings

When considering works to an older house, first consider whether the house is listed. A listed building comes with a set of criteria unique to that building. As well as three grades of listing, each listed building has its own assessment and features of note. Before doing much more than banging a nail into a wall, it’s important to know the details of your building’s listing entry. You need to understand what it means for the works you propose. If you suspect or know listed building consent is required, this is something you must seek before starting works. A huge amount of information is available online from heritage organisations, government and industry bodies.

Historic England has produced a PDF booklet Energy Efficiency and Historic Buildings How to Improve Energy Efficiency which does exactly what it says on the tin. It includes useful diagrams and graphics, some including charming little characters in historic dress just to make the point. I could quote the whole thing here as it’s fascinating. Here is a brief quote which sets out why it’s so important to understand what you’re dealing with when planning to improve energy efficiency in historic buildings:

“Getting the balance right (and avoiding unintended consequences) is best done with a holistic approach that uses an understanding of a building, its context, its significance, and all the factors affecting energy use as the starting point for devising an energy-efficiency strategy. This ‘whole building approach’ ensures that energy-efficiency measures are suitable, robust, well integrated, properly coordinated and sustainable.”

Pitfalls

The pitfalls of work to upgrade energy efficiency in historic buildings are easy to fall into. My background is in historic buildings preservation and I hear a fair bit about various projects. Recently I heard about a well-meant draughtproofing scheme to a listed late Georgian house (that’s the 1820s). It involved sealing around the edges of windows with foam, with no understanding of how air movement worked in that room. Within a short time condensation was forming and the room was becoming unpleasant to be in. Draughty windows can make a room uncomfortable too, but in this instance the work needed to be done against a backdrop of understanding airflow in the room and ensuring a healthy flow was maintained.

To quote Historic England again:

“traditional forms of building construction take up moisture from their surroundings and release it according to environmental conditions. Buildings of traditional construction also tend to have greater thermal inertia than their modern counterparts – they heat up and cool down more slowly. This ability to ‘buffer’ moisture and heat helps to even out fluctuations in humidity and temperature.”

In another instance a building of a similar age had an insulating cladding applied to the entire exterior. Apart from its clanging appearance, the brick and stone underneath could no longer breathe and mould began to appear on the walls. There was no option to remove the cladding, and as this was done to a privately rented house the occupants just have to wipe the mould away every so often. The aim of this work was to improve warmth retention in a hard-to-heat house, but it has had little effect. This is the same situation again – well-intentioned works carried out in the absence of an understanding of how a building’s fabric behaves. We’ll look in a future episode at the rights tenants have to request energy efficiency measures be implemented on their homes.

The Historic England PDF makes the very good point that building owners and occupiers should be involved in planning work to improve energy efficiency in historic buildings. Human beings are creatures of habit, so if works involve change to service delivery within a building – a different heating system for example – the people occupying the building have to understand what they might need to do differently. Although not a historic building, we did hear about a hi-tech building in Westminster that was designed to be very low-energy through the use of clever systems. Unfortunately no-one involved the building’s caretaker, who continued among other things to leave windows open as he always had, thereby defeating much of the energy saving intention.

Works

So what type of work is typically carried out to improve the energy efficiency of a historic building? Historic England makes the fair point that just as in any building, equipment and habit changes can improve matters before the fabric of the building has been touched. A 200 year old building doesn’t need antiquated appliances unless it’s a National Trust kitchen. Pretty much all the usual energy efficiency habits apply just as well in an older building.

Beyond that, the main areas to consider for assessment and improvement are building design and alterations (and understand how it was originally meant to be heated, cooled and used), building fabric, heating, cooling, ventilation, lighting, hot water and appliances.

Low-energy measures

HE advises, very sensibly, starting with low-energy measures to remove sources of discomfort: draughtproofing in a way that works with the flow of air in the building, using curtains in front of doors to block draughts, putting rugs over draughty floorboards. Apply suitably ventilated loft insulation, make any necessary repairs to walls and rooves to avoid unwanted air and water ingress, fit curtains and/or shutters to all windows (this helps to block overheating in the summer too).

In its amber category – involves some risk and/or cost and may not be suitable for all buildings – HE includes:

fitting panelling, secondary glazing, carpets and awnings
reinstatement of a ceiling that has been removed at some point
more involved work to insulate pitched and flat rooves
reinstating or mending rendering and plasterwork, critically using only permeable materials

HE’s red category is for high risk and/or high cost options. These include complex roof-insulating measures, internal and external wall insulation including cavity walls and timber-framed construction, works to floors and the controversial window and glass replacement option.

Windows are a controversial element of improving energy efficiency in historic buildings. Traditional glass does much to bring together the aesthetic of a building. A historic building with modern metal-framed units is visually grating, but of course a lot more comfortable for the occupants than draughty single-glazing in rotting timber frames. HE makes the point that early glass is a heritage asset to be retained. This is always going to be a tricky area.

Case studies

The PDF ends with a set of resources for advice including a link to the energy efficiency area of its website and links to numerous specialist publications with titles such as:

Research into the thermal performance of traditional brick walls
The engine house, swindon, wiltshire: thermal performance of energy efficiency improvements to timber windows
and
a bristolian’s guide to solid wall insulation

Our favourite Energy Saving Trust has also produced guidance in this area. It’s issued a PDF of case studies of works to improve or in some cases introduce energy efficiency in historic buildings. They include Mill Farm at Assington in Suffolk, a grade II listed farmhouse. The introduction to this case study makes the vital point:

“Modern construction is designed to keep moisture out completely. Old buildings deal with moisture in a different way: historic construction methods allow a certain amount of moisture in, but the permeability and porosity of the materials (see above) allow moisture to evaporate without damage.”

This timber-framed and rendered farmhouse underwent extensive renovation work including renewing and increasing the thickness of thatch, fitting sheep’s wool insulation to walls and replacing a damp concrete floor with breathable lime concrete with clay granules. Additional work was carried out to farmyard buildings focussing on insulation, traditional materials and methods, and features such as a composting toilet.

In all, six case studies are included in the PDF, covering a range of types and ages of buildings, a variety of UK locations and all sorts of considerations. There will be a link to this PDF in the show notes, and whether you’re considering works or not, it makes a fascinating read.

Energy efficiency Worldwide

What’s happening globally to encourage and facilitate energy efficiency? This is a hot topic – literally. According to the International Energy Agency – the IEA – global energy demand rose by 1.9% in 2017 – the fastest annual increase since 2010. This economy-led demand outpaced energy efficiency improvements.

So what’s going on to improve the situation? There’s obviously no simple or short answer to that. The issue is many-faceted, has cultural obstacles, is affected by vast disparities in GDP and has to be a priority for any given administration. What we’ll do here is present a few good news stories.

energy efficiency in historic buildings
A solar array in the USA

There are renewable energy initiatives from private firms worldwide, from the mini grid systems popping up in Africa to plans in Sicily and Sardinia for plants turning solar power into both electricity and thermal energy. Energy efficiency measures at national level will be driven by governments around the world. The trick in the developing world in particular is achieving this without negatively affecting economic growth. In more developed industrial nations, for instance Germany, energy efficiency in energy-intensive sectors can deliver cost advantages.

Data centres

Data centres are particular energy offenders. Ranks of servers generate a lot of heat. It needs to be continually whisked away so that the units don’t overheat. Finding a way to keep this at optimum while minimising energy use is a challenge that has been met by the Telia Helsinki Data Center in Finland. It has been awarded the LEED – Leadership in Energy and Environmental Design – environmental gold rating, and has the highest environmental score of all LEED-certified data centres.

Telia’s award came from its particular focus on energy efficiency and water savings. Rainwater is collected and used as rinsing water, significantly reducing water consumption. The data centre uses renewable energy, and then heats up to 20,000 homes with the heat it produces.

Staying in Finland, a data centre owned by Russian internet giant Yandex, located in Mantsala in Finland, is using the heat it generates to heat the district’s water. The data centre’s manager Ari Kurvi comments that “there’s a very solid business case behind it,”, which is essential for these moves to be adopted and maintained. Using this heat, Mantsala has reduced heating costs and reduced emissions by an impressive 40%. As a whole, the data centre reuses 31% of the energy it draws, with a next phase ready to implement which will increase that reuse to 60%.

Review

It’s great to see that not only are companies adopting energy efficiency measures but they’re reviewing how to improve them and increase that efficiency. In this situation, a saving for Yandex is a benefit for Mantsala, which will bolster good relations between the data centre and its neighbours. A sector which is projected to consume up to 1/5 of global electricity by 2025 needs all the good PR it can get.

Food production

Food production is another energy-intensive area and very much under the spotlight at the moment. Every country in the world is forced to reconsider how it will feed its population at an affordable price without obliterating wildlife and polluting the environment. Studies on OECD countries suggest that the food system accounts for 20% of total energy use in some. This covers activies from farming to producing processed foods, and includes wastage. An OECD publication from the Joint Working Party on Agriculture and the Environment, titled IMPROVING ENERGY EFFICIENCY IN THE AGRO-FOOD CHAIN, highlights that there are numerous areas for improving energy efficiency but that identifying these requires further research.

US farms

An article on the US website Farm Energy states that “U.S. farms have almost doubled their average energy efficiency over the past 25 years” but that there are still many opportunities to improve this. This includes simple and obvious actions applicable worldwide such as maintaining equipment so that it works at optimum efficiency, through investing in more energy efficient equipment, improving building standards and using nutrient supplements for livestock more efficiently.

In December 2018, funding for a renewable energy program was included in the Farm Bill that was signed into US law. The Department of Agriculture’s renewable energy grant and loan programs are pulled together under an initiative called REAP for Rural Energy for America Program. It makes sense to bundle renewable energy legislation with bills relating to agriculture as agriculture is so energy intensive. When Barack Obama was in office REAP laid the groundwork for dealing with the carbon footprint of US agriculture as well as promoting rural economic development by supporting clean power projects, including solar-powered grain dryers.

The Americal legislators view this new move as being as much about America’s energy independence as anything else, and using less energy clearly helps here. Power generation projects eligible for REAP funding include biomass heating, geothermal, lower wattage hydropower, hydrogen and wind and solar generation. Energy efficiency upgrades include energy efficient HVAC systems, insulation, lighting, refrigeration, pumps for sprinklers, switching from diesel to electric irrigation motors and crucially replacing energy-inefficient equipment.

Iowa in particular looks to have benefitted from REAP funding. Grants and loans were used to fund solar arrays, refrigeration units and low-energy lighting. Lighting comes up again and again as a huge drain on power.

Food waste

Pleasingly, the USDA funds research aimed at cutting costs and improving energy efficiency, not just capital projects. As well as research into biofuels – not an uncontroversial topic – it’s also tackling food waste. Wasted food wastes every iota of energy and work that has gone into producing it.

Currently the USDA and California Department of Agriculture are funding a project to dry the nutrient-rich waste from fruit and veg processing – skins, seeds, stems and so on. Being wet it doesn’t have a long life and though some of it can be used, most ends up in landfill. The crunch is to find an economical way of drying this matter, known as pomace, without using fossil fuels. The aim is to use 100% solar power and experiments using it to dry tomato and prune pomace are going well. Companies are interested in getting involved. Ultimately, improving energy efficiency in food production is going to be achieved through combining these quite focussed projects with broad energy efficiency measures focussing on infrastructure.

Japan

Japan is in the contradictory position of being one of the highest importers of fossil fuels in the world but one of the most advanced in renewable energy research. Japan has a 94% reliance on imported fuels and is always in the top few countries for quantities of gas, coal and oil imports. Its island nature in the Pacific Ring of Fire puts it in a unique position for such a developed economy and has made it the world’s third biggest power producer with huge per capita power consumption. In 2016 82% of power was generated by conventional fossil fuel-based methods, albeit its coal plants are considered to be the most efficient in the world.

Since the earthquake and tsunami in 2011 this profile has been compounded by altered attitudes to nuclear power, including a complete switch off of its nuclear generators (some since re-opened). It has increased Japan’s need to find new sources of energy. To meet its pledge as a signatory of the Paris Agreement, it needs to reduce greenhouse emissions by a quarter by 2030, and increase the share of renewable energy in the mix to about the same. However, Japan also plans to build more coal-fired plants, so what exactly is going on?

According to polls, climate change is taken seriously by about half of the Japanese population, but the country is coming in for severe criticism over its plans for coal burning plants. Its own foreign ministry’s official advisory panel on climate change has pointed out that failing to move towards decarbonisation could see Japan being left behind economically. Even its own targets are well below other developed countries. However, it is implementing energy efficiency measures and it shoiuld be noted that Japan’s population is falling. This means fewer people to consume power, but also that per capita emission statistics won’t look good.

Nuclear

Despite its vulnerability to earthquakes, Japan has included a 20% share of nuclear energy in its most recent basic energy plan and views it as an important electricity source. Together with its plan for renewables, it makes a 44% zero-emission electricity share and refers to renewables as “major electrcity sources”. It’s less than many people wanted but it is progress of sorts.

energy efficiency in hisstoric buildings
OLYMPUS DIGITAL CAMERA

So what is happening to promote energy efficiency in Japan? There are plans to have 40,000 hydrogen vehicles on the road by 2020. It has promoted the use of electric cars through subsidies. There are big plans to improve the energy efficiency of buildings through a complete switch to LED lighting and installation of fuel cells in homes, with electric or fuel cell vehicles making up at least half of all new sales in about ten years from now.

Japan has a law on the “rational use of energy”, brought in in 1979 in response to the oil crisis. In aims to promote energy efficiency across the board, including in transport and industry. There are now mandatory regulations on energy efficiency standards in large buildings, together with ambitious plans to reduce energy consumotion of new homes and buildings to zero in the next decade.

Thanks to Jocelyn Timperley’s article at carbonbrief.org for the background to this feature.

Sustainability in the construction industry

If a building is standing but is not energy efficient, what is the most energy efficient approach? Is it to acknowledge the materials and energy that have gone into building it and leave it be? To do what works you can? Or to raze it and start again? Sometimes the answer’s obvious, sometimes it’s not, but it can be helped along by considering the sustainability of any proposed works.

Looking at a building as if it was made of Lego, could these bricks be reused? Just because they have been used in an energy-inefficient configuration in one building doesn’t mean they can’t be re-used in a different and much more energy efficient building. Even using them in a regular building reuses the energy and work that has gone into making them. Roof tiles, timbers, steel joists and all sorts of other elements of a building can be re-used. It takes commitment and planning on the part of the developer but it brings rewards.

Glasgow Queen Street station

energy efficiency in historic buildings
Glasgow Queen Street undergoing refurbishment and extension

Glasgow Queen Street station, first opened in 1842, has been undergoing redevelopment for a wee while, extending platforms, providing fully accessible entrances, expanding the concourse and providing new facilities. It’s easy to imagine this will see innumerable skips filled with smashed up materials ready for dumping, and the previous modernisation in the late 60s/early 70s saw just this, together with demolition of Victorian station buildings. Much was to change in Glasgow’s attitude to its built heritage but we mustn’t get carried away on that just now.

Curiously, NetworkRail’s web page on the work doesn’t mention the recycling and reuse that is going on. You have to look quite hard to find the details. There is a Twitter account dedicated to covering the work, @NetworkRailGQS, which feeds us bits and pieces of information. On June 5th this year they tweeted under the hashtag #WorldEnvironmentDay:

“In total, 14,000tn of redundant material from #GQS has been reused by a range of sectors including housing and road projects, as well as the bio-mass industry.” and “Some of the concrete removed was also crushed into small stone and then re-used as part of the base layer for the new station”.

According to their Twitter feed “More than 95% of demolition material has been recycled and 100% of the brick, timber & concrete removed from site re-used elsewhere in the construction industry” – 100%! This project could stand as an example of what can be achieved. These impressive figures were covered in an article in Scottish Nationalist paper The National earlier this month, where it was pointed out that:

“The team also significantly reduced the carbon footprint of the demolition works by carrying out the recycling work within Glasgow.” and the only materials not recycled were hazardous ones such as asbestos. Achieving this within the constraints of working in a city centre location is an achieved to be proud of.

Alstom, Birmingham

At another rail site, the former home of train maker Alstom in Birmingham, 11 hectares is being cleared as part of HS2. Setting aside the merits or otherwise of demolishing a piece of the UK’s railway history, 413,000 tonnes of material has been created during the demolition. Contractors plan to reuse most of it on site.

This is major sorting job, which is carried out on site, splitting out plastic, glass, cement, timber, and insulation materials. Aggregate is crushed and left on-site for road and grounds use. Plywood has been put to a range of imaginative uses including foot scrpaers, planters and clipboards and well as temporary fencing and lockers. Reusing reclaimed materials for temporary structures makes particular sense. An article on website theconstructionindex.co.uk goes into detail about all the considerations of this type of work, including managing heavy plant over subterranean voids, hazardous materials and the different methodologies required. To date, 8000 tonnes of brick have been extracted as well as 4000 tonnes of metal and 1 1/2 of timber.

Circular economy

Despite the good work at Glasgow Queen Street, construction is the largest consumer of natural resources in Scotland and the biggest contributor of waste going to landfill. A new partnership between Zero Waste Scotland and Construction Scotland Innovation Centre is on a mission to demonstrate to the construction industry that a ‘circular economy’ approach where nothing is wasted can offer commercial advantages. The partnership is putting on a programme of events, including:

a series of joint events to promote innovative ‘reuse, recycling and circular thinking’ initiatives within construction;
issuing ‘innovation calls’ to generate innovation projects around waste reduction and reuse themes;
collaborating on further sector-wide strategic projects.

Upcycling

In Hong Kong the focus is on materials ancillary to construction, in this case bamboo scaffolding. It’s a common sight in Hong Kong and tends to end up in landfill after use. This year a scheme has been started to upcycle this bamboo. It can be made into furniture and outdoor toys, and workshops run by HK group Green Come True have been showing people how to make small items from the scaffolding, including wind chimes and pen holders. This is intended to protray the upcycling process as fun. Local designers and architects have been invited to use the bamboo creatively and the plan is to continue collecting the bamboo and widening participation in reuse.

There are many such small projects around the world, including a company in Vancouver that ‘deconstructs’ houses and reuses the wood in renovations. Between demand from the bottom up, and legislation and initiatives from the top down, progress is being made, even if it’s a bit lumpy and quite variable across the world

Energy saving product of the week

One example of an LED light bulb. Image credit: https://commons.wikimedia.org/wiki/User:Frettie

This week’s energy saving product is something that is rapidly gaining ground in both industry and domestic use: LED lighting. Named for their component light emitting diodes, LED bulbs far outlive incandescent bulbs and are more efficient than fluorescent lighting. Wikipedia puts an LED’s energy use at 10% that of a traditional incandescent lightbulb.

According to lyco.co.uk 20% of the world’s energy use goes into lighting so LEDs are a great energy efficient alternative. They contain no mercury so are less difficult to dispose of. Together with their longer life span they are a more environmentally friendly and energy efficient solution than many forms of lighting.

LED bulbs come in all shapes, sizes and wattages. Some lighting comes fitted with sockets that take only LEDs, but it’s easy to find LEDs with standard bayonet or screw fittings for your existing lamps and light fittings.

We don’t have one specific make of LED to recommend as they are widely available in the shops and online. Next time you need to replace a bulb, look for an LED alternative.

Richard’s tip of the week

This week’s tip is about keeping a cool airflow through your house in warm weather – if we get any. Open a downstairs window on the shaded side of your house and an upstairs window on the sunny side, and fresh air will naturally and continually be drawn in from downstairs to travel up through the house and out through the upstairs window. If you have a vent in a downstairs wall the same thing will happen, if the vent is open. This can help to keep a house cool in warm weather. Fingers crossed.

What are we up to? We’re refining our trunking manufacturing and waiting for delivery of our next lot of raw materials. We have several orders with extended trunking to make up in this next batch. If you need a Petflap with longer than usual trunking get in touch with us and we will sort that out for you. Currently we can provide trunking suitable for walls about 60cm thick.

Thank you for listening to another episode of the Energy Efficiency podcast. We will be available through Apple Podcasts very soon. Next week we’ll be looking at the energy efficiency of different types of heating, looking at net zero, and tenants’ rights around energy efficiency works to private rented homes. Please join us then.

“Werq” Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/

Passivhaus: The Energy Efficiency Podcast – episode 2

Passivhaus

Welcome to Passivhaus: The Energy Efficiency Podcast, episode 2, the podcast that brings you a mix of energy efficiency news, products and tips all year round. We’re interested in profiling people and products involved in promoting energy efficiency habits, products and information, so please do get in touch if you have something to contribute.

Passivhaus

passivhaus
A passivhaus in Darmstadt

If you’re interested in energy efficiency chances are you’ve heard of passivhaus. In very simple terms passivhaus is an airtightness standard achieved through high-performance windows, doors and other danger zones together with very high levels of insulation and efficient heating systems. The certification can be applied to whole buildings, specific components such as windows, and the architects and tradespeople involved in the design and build. Rigorous testing is carried out before anything or anyone involved can be designated to have met the required standard.

As a guide, a passivhaus building will have excellent insulation, low-energy services and require very low levels of energy to keep at a comfortable temperature. In the UK building regulations typically require a level of insulation and energy efficiency far lower than passivhaus, and within that standards vary across England, Scotland and Wales, and differ between domestic and non-domestic buildings.

Exeter

However some organisations in the UK are building to passivhaus standards. They clearly recognise the benefits of keeping buildings at a comfortable draught-free temperature at a low energy cost. Exeter City Council is one. For the last 10 years all new council buildings in Exter, both residential and commercial, are very low energy (meeting passivhaus standard), healthy (meeting the German Building Biology principles), climate ready and set within a sustainable landscape. The Association for Public Service Excellence has this to say:

“These buildings are healthy for residents and occupants, comfortable regardless of the weather and extremely cost effective to run (thereby helping to eradicate fuel poverty). From a Council perspective we have reduced operating and lifecycle building costs, happier and healthier tenants with reduced rent arrears and anti-social behaviour and exemplar buildings that are performing way beyond comparable building regulation compliant assets.”

But what do you have to do to create buildings operating to such high energy efficiency standards? It comes down to reducing heat loss, maximising the effect of passive sources of heating such as sun, body warmth and extracted or emitted heat from household appliances, and making up any shortfall with low energy heating systems. The Passivhaus Institute describes it as

“A Passivhaus is a building in which thermal comfort can be achieved solely by post-heating or post-cooling the fresh air flow required for a good indoor air quality, without the need for additional recirculation of air.”

High standards

This can be a very complex process requiring expensive high-performance elements such as triple-glazed windows and a mechanical ventilation system with efficient heat recovery; extremely detailed planning; and specialist builders and fitters.

It’s not feasible in many cases of renovating an existing property, in which case EnerPHit can be a more appropriate standard to aspire to. This is a slightly less exacting standard designed for renovations, particularly where the architecture of the building needs to be conserved. Improving the energy efficiency of historic buildings without causing more problems than you solve is something we will look at in a future episode.

EnerPHit

passivhaus
A Victorian house

The UK has one of the highest proportions of pre-WWII domestic buildings in Europe. Unsurprisingly old and inefficient buildings have been identified as one of the biggest contributors to energy wastage in the EU.

The EU has identified energy efficiency as one of the pillars of its policy response to addressing the challenges of climate change and the reduction of greenhouse gas emissions. There is an EU-funded PDF brochure available titled EuroPHit: Increasing the European Potential, Implementing deep energy step-by-step retrofits. The link will be in the show notes. It discusses passivhaus and the scientifically-quantified benefits of the passivhaus standard.

EnerPHit benefits from the passivhaus expertise that is available in the UK and beyond. While accepting that it’s not possible to reach such high standards, working with passivhaus principles in an EnerPHit project will dramatically improve the energy performance of an older house. The Passivhaus Trust website includes a number of case studies of both social and private housing, commercial buildings and educational settings, which have undergone renovations aimed at achieving EnerPHit standards.

EnerPHit focusses on improving the energy performance of the fabric of a building while accepting that many aspects of a building are fixed: location, orientation and often a thermal bridge or two that just can’t be eradicated. According to the magazine Homebuilding & Renovating:

“To achieve EnerPHit you must achieve:

A space heating and cooling demand of 25kWh/m2/year (compared to the Passivhaus standard of 15kWh/m2/year)
Instead of an airtightness performance of 0.6 air changes per hour you need to achieve 1.0 (the Building Regs for new homes require between 5 and 15 according to the Chartered Institution of Building Services Engineers)”

Deep works

To achieve these sorts of figures, though not as rigorous as passivhaus standards, can still be a huge undertaking. It can involve digging out floors and replacing roofs, all within the confines of an existing build. In this situation even more perhaps than for a new build, an expert and very well-informed design team is crucial. The Homebuilding & Renovating article is very informative, so if you’re considering deep energy efficiency work on an existing build it’s very worth while reading.

Open Days

Every year the UK Passivhaus organisation puts on the UK Passivhaus Open Days, as part of the International Passivhaus Open Days. This year it’s running the weekend of 28th-30th June, and details can be found at http://www.passivhaustrust.org.uk/event_detail.php?eId=650

Community Projects

The Petflap on red

Most people won’t undertake a large scale project to build or retrofit a house to passivhaus or EnerPHit standards. Many people will make some changes, install items such as a Chimney Sheep or a Petflap draughtproof pet door, hang a curtain over the front door or maybe replace a boiler.

Funding

Many households have neither the budget nor the scope to make any improvements. It’s in this situation that community groups can provide an invaluable service. They offer advice, subsidised services and products, and in some cases obtain grants. Plymouth Energy Community – PEC – is one of these organisations. In 2016 it received £500,000 from the Big Lottery Fund for a four-year project to help disabled people stay warm, well and comfortable in their homes.

The problems most commonly encountered were issues with the building fabric – poor insulation and black mould for example – but also problems paying bills and a lack of understanding of how to get the best deal from an energy supplier. PEC visits people in their homes. It advises on the best energy deal and how to use energy efficiently, and looks at how the household could benefit from grants and schemes such as the Warm Home Discount Scheme.

The Warm Home Discount Scheme

The Warm Home Discount Scheme is a government initiative open to people in receipt of specific pension top-ups, and those on a low income who qualify for their supplier’s criteria for the scheme. There’s potential for up to £140 off an electricity bill that comes in the form of a discount off the bill rather than as a payment.

These and other grants and schemes can be complex to apply for, so the assistance of groups such as PEC is very welcome and makes a real difference to those it reaches. The Royal Borough of Kensington and Chelsea runs a similar scheme under the title Homes4Health, focussing on the poor health outcomes of living in a damp home, such as respiratory and circulatory problems. This free service is delivered by the environmental charity Groundwork London, and aims to reach young families, elderly residents and those with multiple health conditions. The range of services offered by Groundwork London through this scheme is impressive and wide-ranging. It includes practical help such as installing small draughtproofing measures.

There are similar schemes run all over the UK so if you or someone you know could benefit search up something like “warm homes energy efficiency” with your location and see what comes up.

Thermal imaging

The magnificently-named C>H>E>E>S>E project in Bristol is doing something different from many community projects. It conducts thermal imaging of a home from low-cost to no-cost depending on a household’s circumstances. A clear understanding of a building’s thermal performance is essential if works to the home are going to focus in the right and most cost-effective places. CHEESE’s work typically shows up poorly-fitting windows, missing insulation and draughts between floorboards. These can all make a home feel uncomfortable in cool or damp weather.

Generating power

Not all community energy efficiency projects focus on home improvement and help to pay bills. Some schemes actually generate the energy. There’s a list of projects on the Community Energy England website. Back to Plymouth, a solar array has been built on derilict land, providing enough clean energy for 1000 homes. This is an excellent use of derilict or brownfield sites. The project is forecast to provide a community benefit fund of approximately £2,900,000 to support PEC’s grassroots work.

In Talybont on Usk a group is generating hydroelectricity for the community. This first community hydro scheme in Wales runs a 36kW hydro electric turbine off the compensation flow from Talybont Reservoir. Since launching in 2006 the group has diversified into a community eco car share scheme that runs one electric van, and a car running on recycled vegetable oil. The group has also installed PV panels on the community hall roof which helps cover the hall’s running costs and powers the community electric car. The group continues to develop and looks to be a great example of what can be achieved.

A project straddling the two community energy efficiency models is Energise Barnsley, which has installed free solar PV panels on the roofs of over 300 council-owned homes. The majority of these homes are bungalows with elderly residents. A proportion of them are on pre-payment meters. The residents benefit from savings through the use of a solar electricity monitor which indicates when the solar panels are generating and so when they can use free electricity. So far residents have saved over £40,000 and reduced carbon emissions by 400 tonnes. Schools, sheltered housing and community buildings in Barnsley have also had the panels installed. This makes the combined size of the portfolio the largest UK community energy project by the number of roofs installed on.

Complex

Reading up on the projects listed, it’s clear that starting up a wind, solar or hydro project is a slow and complex process requiring various funding streams, feasibility studies and often planning permission. Many projects listed are great ideas but are only part- way through this process.

The UK Energy Research Centre – UKERC – website says that although exact numbers aren’t available, it’s estimated there are about 300 small energy generation schemes in the UK. The sector was going at a great pace until recent political changes reduced support for schemes of this sort through changes to the feed in tariffs. This has slowed down development.

However a press release on the UK Power Networks website states that community energy is powering thousands of homes in the South East, East of England and London, according to a newly published report into local generation with Community Energy England and Community Energy South. The majority of community electricity generation in the region comes from two solar farms owned by Orchard Community Energy in Kent and Meadow Blue Energy in West Sussex. They generate 10.4 MW between them. This is very encouraging and we hope to see more good news of this nature.

Smart Meters

Smart meters have for a few years now been hailed as the solution to energy wastage. We must all have seen a friend very excited by the new monitor and turning off appliances they had previously hardly considered. This tends to be a flurry of enthusiasm in the early days, then normal service is resumed. The reality is that smart meters themselves do nothing to reduce a building’s energy usage. They can draw attention to the most energy-hungry items and allow the householder to make a judgment to discard, turn off or upgrade an item but ultimately this human effort is what makes the difference. Smart meters can lull the homeowner into a false sense of security of having ‘done something’, when actually nothing will change without their input.

Changing habits

Depending on what you read, smart meters are a fad, are here to stay, will save half a billion a year or reduce your annual bill by about a tenner. Clearly smart meters divide opinion. According to a Which report on smart meters:

“34% of smart meter owners think their gas and electricity use has reduced since they had a smart meter installed. In contrast, 20% of smart meter owners think theirs has increased.”

The rest don’t think anything’s changed. It seems installing a smart meter is most likely to lead to savings if the homeowner has requested one, ie the individual was already aware of energy efficiency and wanted a tool to help them best achieve it, so the willingness to work with the meter was there in the first place.

Widespread installation

The government would like all homes to have a smart meter installed by 2020. There’s no obligation and anyone has the right to refuse. Seeing smart meters in all homes is part of the process of developing a ‘smart grid’. This smart grid would allow for more efficient matching of supply and demand. Balancing this is a headache for the industry at the moment.

Installing smart meters widely should remove the need for estimated bills and getting into a cobwebby dark and awkward corner with a torch to read the meter. Some energy suppliers offer so-called agile tariffs which display energy prices via the smart meter on an eg half-hourly basis. A householder can then use energy when it’s cheapest. On the other hand, the cost of installing a smart meter in every home adds something to the bill.

Problems

Some earlier meters have lost functionality when the householder has switched supplier but this can be fixed by a wireless update. Failing that the energy supplier is required to fit a new meter.

According to the Octopus Energy website:

“As of March 15 2019, SMETS1 meters are no longer Ofgem compliant.”

They go on to explain that there’s only limited SMETS2 stock available in the UK currently. Reading around energy suppliers’ websites, it’s clear that they have reservations and are holding back on full scale installation to monitor smart meter performance and problems.

These problems seem not to be going away any time soon. According to The Independent:

“Energy giant SSE agreed to donate £700,000 to the official fund for supporting vulnerable bill payers this week after failing to meet obligatory smart gas meter installation targets. It’s the latest in a series of hits, delays and, ironically, spiralling bills to have plagued the much-vaunted smart meter rollout, designed to deliver cost-saving technology to 30 million homes and small businesses by 2020.”

The article goes on to quote Smart Energy GB, the agency promoting smart meters. It said that of 2000 people polled more than a third said they would be more likely to buy an electric vehicle (EV) if they could use their smart meter to programme charging for the cheapest periods. EV use could play a key role in promoting enthusiasm for smart meters in the home.

So far the greatest benefit of smart meter roll out is as much for the benefit of the energy suppliers and the national grid as it is for the customer. The ball is in the companies’ court to help householders understand how to get the best from their meters.

Energy saving product of the week

This week’s energy saving product is another simple but effective idea. Radflek Radiator Reflectors are laminated aluminium foil panels that sit against the walls behind your radiators. They reflect back into the room heat that would otherwise be wasted against an external wall. Tests showed that Radflek reduced heat transfer through walls by 45%

Radflek’s website claims that it reflects 95% of wasted heat back into your room, really exceptional performance. We like the idea of these reflectors because they prevent waste, one of our top aims, but like our products they are fit-and-forget solutions. The panel stays in place all year round and whenever your heating comes on it will start doing its job immediately.

At an affordable price of around £20 for six panels, Radflek expects to pay for itself in a year or so. The panels go on for years so you make savings every year. Added to that, Radflek’s site describes the product as visually unobtrusive, easy to fit and requiring no DIY skills. For the final seal of approval, The Energy Saving Trust recommends Radflek Radiator Reflectors.

Richard’s Energy Saving tip of the week

If you want to fit insulation to parts of your house but have only a small budget, not enough to fit out a whole room or house, you will get the maximum effect for your money by insulating the walls from the ceiling down. This prevents the warm air that rises in a room from chilling down as much as it would in a room without insulation at the higher levels. Together with the thermostat ledge tip in last week’s episode, this will help you keep warmer for less outlay and get the best from your thermostat.

Letterplate Eco

What are we up to? We’re still in flux while we work with new kit, and we’re expecting samples to arrive soon from a new manufacturing partner. While keeping a close eye on quality and always looking at ways to make our manufacturing as quick and simple as possible, we are looking to work with partners as much as we can. This is how we will increase manufacturing volume and bring the Letterplate Eco to market as soon as we can.

Thank you for listening. Search for Ecoflap on Twitter and Instagram to keep up with us until next time. Next week we’ll be talking about energy efficiency in historic buildings, energy efficiency across the world and sustainability in the construction industry. We are lining up a couple of interviews for future episodes, and as always we’re keen to hear about energy efficiency initiatives, projects and products, so please do get in touch if you have something to contribute. Until next time.

“Werq” Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/

UK Renewables: The Energy Efficiency Podcast – episode 1

UK Renewables

Welcome to UK Renewables: The Energy Efficiency Podcast, episode 1, the podcast that brings you a mix of energy efficiency news, products and tips all year round. We’re interested in profiling people and products involved in promoting energy efficiency habits, products and information, so please do get in touch if you have something to contribute.

UK Renewables

uk renewables
Wind farm

At the end of May the UK press was widely trumpeting the fact that Britain (without Northern Ireland) had managed to power itself for two weeks without burning any coal. Since April the periods without burning any coal had lengthened, from 90 hours, to a week, to two weeks. At the same time, on one day a quarter of Britain’s needs was met by UK renewables in the form of solar energy alone.

Renewable UK, the renewable energy trade association, states that half of UK renewables comes from wind power, something in which the UK has been a pioneer and which continues to grow.

Other fuels

It’s important to bear in mind that not all non-coal power comes from UK renewables. Nuclear and gas play a part. It’s also the case that some of Britain’s coal-fired power stations were always on their way out. They are outdated and/or fail to meet European regulations on acid rain.

The government has done something to support solar and wind installation through subsidies, but it’s carbon pricing that has really seen gas become more attractive than coal as it emits less carbon. This merely swaps one fossil fuel for another. Switching from a position of using 100% coal for power production to 100% UK renewables was always going to be a circuitous journey.

Julian Leslie of National Grid Electricity System Operator – NGESO – expects these runs of non-coal power to become the new normal as UK renewables source infrastructure increases. Julian Leslie believes that by 2025 we will be able to fully operate Great Britain’s electricity system with zero carbon. This requires a significant boost to renewable energy production. With seven of the UK’s eight nuclear power plants stopping energy production in the next 11 years and only one new plant due into operation, emissions could begin to rise without sufficient renewable energy ready to fill the gap.

This is a business operation as much as an engineering challenge. Investment is essential. Third-party services must be identified and secured. If your company is in the offshore wind industry, you might be interested in the Global Offshore Wind conference in Manchester on the 19th-20th June. You can find out more about that at events.renewableuk.com

Energy efficient appliances

The bigger the fridge the more power it uses

Energy is precious and usually expensive. You don’t want to waste the energy you pay for. There are all sorts of ways to save energy in the home and we’ll be talking about as many as we can in coming episodes, but one that we all face from time to time is replacing an energy-hungry appliance such as a fridge or a washing machine.

According to choose.co.uk the UK spends almost £3.5bn on electricity each year just to keep our clothes clean, wash our dishes and freeze our food. The worst offenders include electric immersion heaters, fires and showers, the dishwasher and it won’t surprise you to hear, the tumble drier.

These items and the other household items we rely on such as boilers and freezers take a great deal of water and energy to produce in the first place, so consider carefully just what it is you’re wanting to achieve – is it lower household bills through running more energy efficient appliances, or reducing your overall consumption of raw materials by using an appliance until it’s beyond repair? The energy efficiency of household items has improved in leaps and bounds in the last few years so there are great energy savings to be made. If the time has finally come to replace an item, what do you look out for, and who do you trust?

Information

UK renewables
The discontinued Ecoflap letter box draught excluder

The Energy Saving Trust is a good starting point. It’s a source of objective information but it also endorses products – including our now-discontinued letter box draught excluder the Ecoflap. A quick glance at its website provides food for thought including the excellent advice to consider the size of appliance you need. One person on their own is unlikely to need to same capacity fridge or washing machine as a family of six. Energy rating is dependent on size: two fridges with the same rating but that are different sizes will have different running costs. It also includes information on how to run your household goods efficiently plus how to dispose of the old ones.

Good habits

Interestingly it seems we pay far more attention to the energy rating of the ‘workhorse’ items such as white goods when we’re looking to buy than we do to consumer electronics such as a TV. We then tend to leave these items on stand-by, which racks up power usage and therefore bills. Whether it’s the financial hit, the environmental impact or both that bother you, it’s worth getting into a few good habits. Some gadgets don’t like being switched on and off too much, it can cause its own problems, but unless your life is run by the microwave clock it’s not going to be much hassle to turn the microwave off at the wall when you’re not using it. Power down your PC overnight or when you’re out for the day, same for the TV. You could save around £30 a year, depending on your personal set-up.

Small energy suppliers going bust

At least eight small energy suppliers have gone bust in the last couple of years, with One Select the latest casualty. What’s behind this slew of failures, and what happens when your energy supplier ceases trading?

Ofgem

Answering that last question first, Ofgem steps in when a supplier goes under. Ofgem will ensure your energy supply continues, that any credit balance is protected, and will allocate you a new supplier. Ofgem’s advise is to “sit tight and don’t switch supplier”.

Turbulent sector

The energy sector has been turbulent over the last couple of years. This is partly due to tightened regulation and a government-enforced price cap on some tariffs. They are designed to remove overcharging and profiteering. Ofgem expects this energy cap to save customers between £75-120, depending on their plan. The price cap level will be updated in April and October every year to reflect the latest estimated costs of supplying electricity and gas, including wholesale energy costs.

New suppliers

Ofgem has tightened its rules for new energy suppliers entering the market. They must prove adequate financial resources but also crucially that they can meet customer service obligations. Consumers have been angry over rising bills and poor customer service. Perhaps this is why April this year saw a record number of customers switch to a new supplier. The overwhelming majority switched away from the big six to small and medium companies despite the collapses. This process seems not to be smooth however. Complaints about the switching process just overtake comnplaints about other aspects of customer service. Ofgem is clearly taking customer service capabilities seriously. It banned one provider from taking on new customers until it had sorted out its problems.

In the event of a problem the Energy Ombudsman can step in to mediate and to date has solved nearly 100,000 cases. The most common complaint is misbilling. Smart meters should help with this – something we’ll be talking about soon – but roll-out is far from complete and mistakes can still happen.

Lack of information is a common cry with bills, with some customers experiencing changes to their Direct Debit without the requisite notice period, or bills simply not appearing. Of course prices go up too, but suppliers should give customers 30 days notice of any rises. On a fixed tariff the price can increase only if the government increases VAT. The notice period for a fixed tariff is 42-49 days, giving customers time to find a new deal without exit fees. If a customer finds themselves struggling to pay their bill Ofgem’s advice is to talk to the supplier as quickly as possible to work out an affordable plan. There is plenty of information available online about energy supply, your rights and what to do if there’s an issue.

Home draughtproofing

If we’re lucky enough to have decent summer weather in the UK, it’s easy to forget about draughtproofing. It doesn’t feel important when the weather’s warm and no-one’s noticing the draughts creeping under doors and through poorly-fitting windows. However this is to miss an opportunity to make improvements, literally fixing the roof while the sun shines. These steps can be large, such as fitting a new boiler or having other central heating improvements made while you’re unlikely to be needing the heating on, or small, depending on your set-up and your budget.

uk renewables
Chimney Sheep

We want to feature energy saving household products on this pod, and we’re starting with the Chimney Sheep. This is the classic bright idea – simple but effective and you wonder why you didn’t think it up yourself. Essentially the Chimney Sheep is a chimney blocker made of 100% Herdwick wool. It’s inserted into the chimney (when the fire isn’t being used) to prevent draughts, birds nests and so on whistling down the chimney.

Chimneys draw air through them all the time, whether the fire is lit or not, creating draughts. Fitting a Chimney Sheep interrupts this air flow but allows a chimney to breathe. Like our products, it helps to keep warm air in during the winter, and cooled air in during the summer, and offers a bespoke option. The Chimney Sheep starts from £16. The Chimney Sheep includes some impressive statistics on carbon saving and bill reduction, so visit them at chimneysheep.co.uk to find out more about this innovative product and buy one to tuck up the chimney over the summer months.

What are we up to? We’re a family firm designing and manufacturing draughtproofing products for the home. Right now we’re developing a new piece of kit for shaping trunking, and relocating some of our operations from one base to another. We’re also designing the manufacturing of the Letterplate Eco, the new external letterbox draught excluder that will replace the Ecoflap. When he heard about the new podcast our lead designer, Richard, leapt in with a tip of the day, so here it is.

Richard’s tip of the week

Fit a small ledge above your thermostat to change the movement of air around it. This will provide a more accurate temperature reading. Warm air rises then cools as it comes into contact with walls and the ceiling. This cooled air, which is cooler than the air in the middle of the room, falls back down the walls and on to the thermostat. It will give the thermostat the impression that the room is colder than it really is. This can cause your heating to come on when you don’t want it to, using excess energy and increasing your bills. There are plenty more of Richard’s tips where that came from, so we will aim to bring you one every week!

Thank you for listening. Search for Ecoflap on Twitter and Instagram to keep up with us until next time, when we’ll be looking at EnerPHit and passivhaus, smart meters and community projects.

“Werq” Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/